Diabetes when medicine is scarce

I have friends that have concerns about how they will treat their diabetes when the shtf and i read this article and thought i would repost it. This article is from SurvivalBlog.com.

On Diabetes, and Thinking Outside the Box, by Dr. Cynthia J. Koelker

A thoughtful EMT wrote me to ask:

Dr. Koelker:
What effect could you have on blood sugar for a diabetic (type 1) through blood
transfusions? I am a paramedic, and our field treatment for high blood sugar is IV
fluids until the hospital can give them insulin to lower the blood sugar. In a SHTF
scenario, there is no hospital. The thought process got me thinking though….My
questions are these:

1) What, if any effect could you have on lowering blood sugar through transfusions?
i.e., basically finding a non-diabetic donor match, and swapping a couple pints of
blood…the non-diabetic can process any sugar, and the diabetic gets blood sugar
lowered by dilution.

2) Could you time a high sugar meal for the non-diabetic to manipulate the blood you
were donating? Could you get enough glucose and insulin transfused to affect the
diabetic’s intracellular glucose?

3) If the science and idea are valid, would it be able to have any appreciable
effects or would you be re-arranging deck chairs on the Titanic?

The idea intrigues me, because blood transfusion gear can store a lot longer than
insulin.

Thank you- Eli

Here is my reply:
Excellent questions, Eli. I’ve pondered the possibility myself and will offer my
preliminary conclusions.
First, theoretically, the answer is yes, it could work.
For example, in a scenario where, say, identical twins would essentially share the
same pancreas, IV lines could be connected in a continuous system, allowing the
diabetic’s blood to enter the non-diabetic’s system, with the “treated” blood
being returned in equal amounts from the non-diabetic to the diabetic.
This is not quite the same as swapping a couple pints of blood, as I’ll address
below.
Eli’s preliminary questions raise several more:
1. Who is a suitably-matched donor?
2. Would a non-diabetic be the best donor?
3. How much blood would need to be transfused?
4. How long would this arrangement work?
5. Should the non-diabetic receive blood back in return?
6. Should serum be used instead of blood?
7. Could the blood be administered via a different route?
8. Could non-human blood be used?
9. Could God have left us a simpler answer for treating diabetes Type 1 than
we’ve discovered to date?
To begin with the end, I believe #9 above could well be true. Though science has
investigated pancreatic transplantation, islet cell transplants, stem cell
manipulation, and other high-tech options, no simple solutions have been found, but
they yet may be out there.
And so, at TEOTWAWKI, what to do?

(Before I go on, let me say don’t miss the March 13, 2013 SurvivalBlog article by
AERC regarding Insulin Dependent Diabetics. The author offers many excellent
suggestions along with personal experience as a diabetic.)

But the question remains: what to do if no insulin is available? Would transfusion
work?
A few calculations will help explain: In the non-diabetic, serum insulin levels
average <_30 microunits="microunits" ml="ml" thats="thats" _0.000030="_0.000030" units="units" or="or" _0.003="_0.003" per="per" liter="liter" ofbr="ofbr">blood or serum. (In a type 2 diabetic with insulin resistance, the serum insulin





level may actually be higher than normal.) If a type 1 diabetic requires 24 units of





insulin/per day, that’s 1 unit/hour, or 0.0427 Units per minute, if my





number-crunching is correct (and let me know if it’s not). The calculations are





actually quite complex, in part due to the half-life of insulin, along with multiple





other factors.





To simplify the computation enormously, if it takes a serum insulin level of around





10 microU/ml to metabolize a serum glucose level of 100 mg/dL, it would take about 5





times that much insulin (or non-diabetic blood) to regulate a serum glucose level of





500. To treat a diabetic’s blood sugar of 1000 could require all the insulin





within a non-diabetic’s circulatory system – and clearly you can’t donate all





your blood multiple times a day (except in the shared-pancreas arrangement described





above).





If a diabetic’s blood glucose level of 900 were suddenly diluted 50:50 with a





non-diabetic’s blood (which isn’t really possible), this would decrease the level





to around 400 mg/dL to start, then perhaps 50 points further due to transfused





insulin . . . but only for a very short time, on the order of hours at best. And in





order to administer this much blood, an equal amount would have to be removed via





blood-letting.

Given an unlimited blood supply and ICU-level nursing, perhaps this could be
accomplished, but considering factors likely to be present at TEOTWAWKI, the
challenges appear to be insurmountable.

Additionally, to answer a few more of my own questions above:
1. In the identical twins shared-pancreas scenario, with blood going in and out
of each person, blood typing is not a problem. However, for others to share blood
back and forth, both the diabetic and non-diabetic would need to be compatible to
both donate and receive blood. Simple ABO/Rh typing does not prevent all transfusion
reactions, and of course even correct typing does not eliminate the possibility of
infection or fluid overload. Still, in a life-or-death situation, with a supply of
insulin expected to be available shortly, it could be considered. (Make sure to
obtain a blood donation compatibility chart if you would consider transfusion for any
reason. You’ll either need to know everyone’s blood type ahead of time, or learn
how to crossmatch it yourself.)
2. Theoretically a normal weight or an overweight person, even a mild Type 2
diabetic with insulin resistance, could serve as the donor.
3. Serum alone is not likely to work because transfusion alone is not really
feasible. The only way I see transfusion working is the shared-pancreas scenario
already described.
Next, what about non-human blood?
Animal-to-human blood transfusions have been tried hundreds of years ago, but were
often fatal, and assuredly would be fatal using large volumes of blood.
But could the insulin within, say, a gallon of cow blood be put to use some other
way?
Theoretically, maybe so. The blood would need to be centrifuged promptly to remove
the cells, since the blood cells themselves remain metabolically active until they
begin to break down. The serum could be further concentrated by evaporation at room
temperatures (with careful attention to sterile technique). The resulting
insulin-containing liquid should not be given intravenously but might be effective
via a rectal infusion, high in the anus (see Oral Insulin (Swallowed) and Rectal
Insulin Suppository for Diabetics by T.R. Shantha, MD, PhD, FACA).
Although insulin does not degrade when given rectally as it does when given orally,
absorption is a potential problem. Although some insulin is absorbed rectally, I can
find no answer to whether bovine insulin would be – but it might work.

Another possibility would be an enema of blenderized bovine (cow) pancreas, though
the pancreatic enzymes might irritate or even perforate the colon – perhaps a
reader would like to try this experiment on rats or rabbits before trying it on
themselves. Allergic reactions are also a concern.

The earliest treatment of hypothyroid patients involved implanting (not
transplanting) sheep thyroid tissue into a patient. Surprisingly, it worked. So
could the same idea work with insulin-dependent diabetes? Again, I don’t know, and
again the pancreatic enzymes could be a problem. But it might work, to a degree.
Perhaps a curious reader would be interested in trying this experiment on their
diabetic pet. Answers simply cannot be obtained without experiments (some of which
end badly for the subject).

Transdermal insulin use has also been studied, but requires ultrasound or
iontophoresis for transport through the skin. Could a slurry of pancreas be used on
the skin? We just don’t know – I doubt it’s been tried. The pancreatic
enzymes may irritate the skin. Alternatively, the same enzymes may aid insulin
absorption. Insulin itself has some deleterious effects when applied topically. But
if the choice is death or experimentation, necessity becomes the mother of invention.

In summary, the analogy of re-arranging deck chairs on the Titanic is probably valid
regarding using transfusion to lower blood sugar, but if I had a child with Type 1
diabetes, I’d be motivated enough to start experimenting, maybe even learn how to
follow Banting’s recipe for insulin. And I’d do some hard praying about stem
cells – the answer to a new pancreas lies within our bodies; how to unleash it is
the only question.

About the Author: Dr. Cynthia Koelker is SurvivalBlog’s Medical Editor. her web site
is www.ArmageddonMedicine.net.

No Comments Yet.

Leave a Reply

You must be logged in to post a comment.